

METRIC UNITS AND U.S. EQUIVALENTS

Unit	Abbreviation	Number of Meters	Approximate U.S. Equivalent
kilometer	km	1,000	0.62 mile
hectometer	hm	100	328.08 feet
dekameter	dam	10	32.81 feet
meter	m	1	39.37 inches
decimeter	dm	0.1	3.94 inches
centimeter	cm	0.01	0.39 inch
millimeter	mm	0.001	0.039 inch
micrometer	μm	0.000001	0.000039 inch

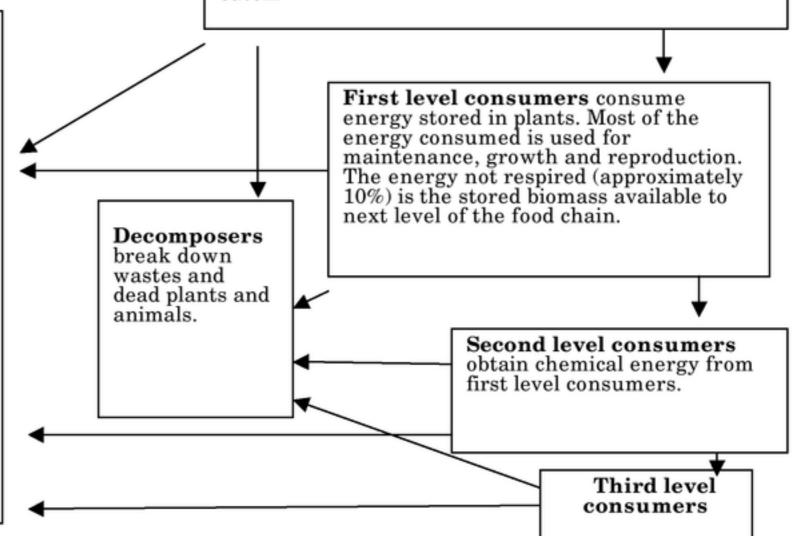
MASS AND WEIGHT				
Unit	Abbreviation	Number of Grams	Approximate U.S. Equivalent	
metric ton	t	1,000,000	1.102 short tons	
kilogram	kg	1,000	2.2046 pounds	
hectogram	hg	100	3.527 ounces	
dekagram	dag	10	0.353 ounce	
gram	g	1	0.035 ounce	
decigram	dg	0.10	1.543 grains	
centigram	cg	0.01	0.154 grain	
milligram	mg	0.001	0.015 grain	
microgram	μg	0.000001	0.000015 grain	

ENERGY FLOW DIAGRAM

The sun gives off electromagnetic radiation that is converted into two useful forms of energy:

THERMAL ENERGY

Thermal energy increases the vibration of electrons resulting in heat. It can also be re-radiated back to space. Thermal energy warms the earth, heats the atmosphere, drives the water cycle and produces air and water currents.


CHEMICAL ENERGY

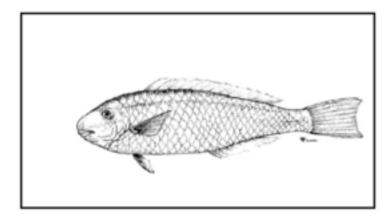
Chemical Energy: Some special molecules convert light energy into chemical energy by storing it in their chemical bonds (e.g., photosynthetic pigments absorb light energy and convert and store it in the chemical bonds of sugar).

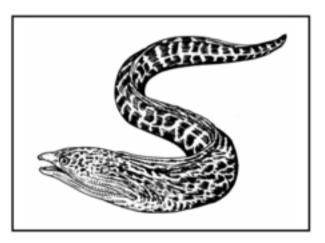
Producers: Most of the energy produced by the plants is lost as heat energy. The remaining energy is stored as chemical energy in the bonds of organic molecules. This is the energy available to the herbivores and the decomposers when the plants are eaten.

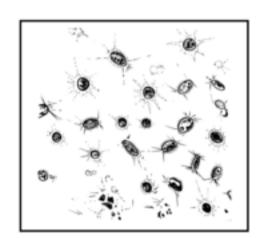
ENERGY LOSS:

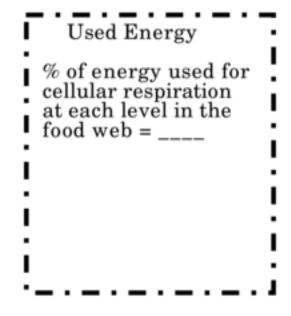
Approximately 90% of the stored energy is lost as heat at each trophic level through homeostasis (e.g., respiration and digestion) as well as growth and reproduction.

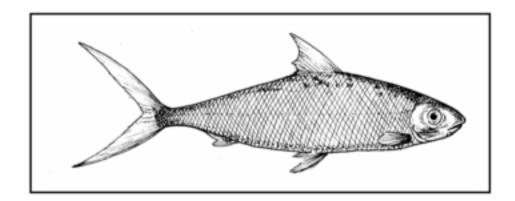
STUDENT CHALLENGE: Identify at least two marine organisms for each of the major groups: producers, each level of consumers, and decomposers.

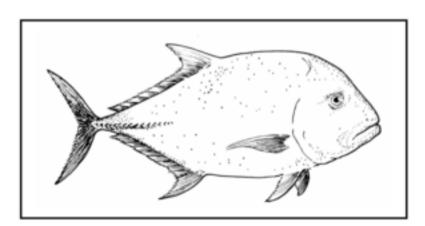



Passing on the Energy

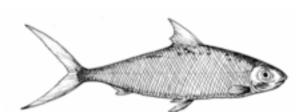

Name: _____


- Use a solid arrow → to show the direction of the flow of energy from one organism to another in the coral reef food web.
- Use a dashed arrow ---> to show the flow of "Used Energy" for each organism.





Date: _____



Passing on the Energy

LEARNING LOG - 3

- 1. Explain how energy moves through the coral reef food web.
- 2. Describe the role of photosynthesis in the flow of energy.
- 3. Describe the role of cellular respiration in the flow of energy.
- 4. Write a math statement that explains the percentage of energy used for cellular respiration and the percentage of energy passed on to each level in the food chain.

5. Describe what makes Hawaiian fishponds such an efficient way of producing fish.

